Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots

نویسندگان

  • P. Alonso-González
  • P. Albella
  • M. Schnell
  • J. Chen
  • F. Huth
  • A. García-Etxarri
  • F. Casanova
  • F. Golmar
  • L. Arzubiaga
  • L.E. Hueso
  • J. Aizpurua
  • R. Hillenbrand
چکیده

Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Raman Probe of Single Molecules Attached to Colloidal Silver and Gold Clusters

We review surface-enhanced linear and nonlinear Raman scattering experiments on molecules and single wall carbon nanotubes attached to colloidal silver and gold clusters. Surface-enhanced hyper-Raman scattering and surface-enhanced anti-Stokes Raman scattering from pumped vibrational levels are studied as twophoton excited Raman processes where the scattering signal depends quadratically on the...

متن کامل

Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection.

We provide the theoretical framework to understand the phenomenology and statistics of single molecule (SM) signals arising in surface enhanced Raman scattering (SERS) under the presence of so-called electromagnetic hot spots. We show that most characteristics of the SM-SERS phenomenon can be tracked down to the presence of a tail-like (power law) distribution of enhancements and we propose a s...

متن کامل

Nanoparticle-decorated nanocanals for surface-enhanced Raman scattering.

The surface-enhanced Raman scattering (SERS) effect is considered important for fast detection of characteristic ‘‘fingerprint’’ signatures of analytes. In the SERS effect, a substantial Raman enhancement arises on localized spots (‘‘hot spots’’) in metallic nanostructures owing to strong local electromagnetic fields associated with the surface plasmon resonances of metal nanostructures. SERS o...

متن کامل

Designing, fabricating, and imaging Raman hot spots.

We have developed a probe of the electromagnetic mechanism of surface-enhanced Raman scattering via Au nanodisk arrays generated by using on-wire lithography. In this approach, disk thickness and interparticle gap are precisely controlled from 5 nm to many micrometers. Confocal Raman microscopy demonstrates that disk thickness and gap play a crucial role in determining surface-enhanced Raman sc...

متن کامل

Raman Markers from Silver Nanowire Crossbars

One dimensional metal nanostructures with the capability of guiding electromagnetic energy are attractive for nanoscale optical devices and circuits. These nanostructures can be also excellent candidates for Raman markers that exploit surfaceenhanced Raman scattering (SERS) phenomena. Onedimensional nanostructures show promising capabilities for guiding and confining the exciting light in nanog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012